An Introduction to Statistical Learning: with Applications in R (Springer Texts in Statistics Book 103) 1st ed. 2013, Corr. 7th printing 2017 Edition, Kindle Edition
Gareth James
(Author)
Find all the books, read about the author, and more.
See search results for this author

Daniela Witten
(Author)
Find all the books, read about the author, and more.
See search results for this author

Trevor Hastie
(Author)
Find all the books, read about the author, and more.
See search results for this author

Robert Tibshirani
(Author)
Find all the books, read about the author, and more.
See search results for this author

Learn more
Use the Amazon App to scan ISBNs and compare prices.
Download the free Kindle app and start reading Kindle books instantly on your smartphone, tablet, or computer  no Kindle device required. Learn more
Read instantly on your browser with Kindle Cloud Reader.
Enter your mobile phone or email address
By pressing "Send link," you agree to Amazon's Conditions of Use.
You consent to receive an automated text message from or on behalf of Amazon about the Kindle App at your mobile number above. Consent is not a condition of any purchase. Message & data rates may apply.
An Amazon Book with Buzz: "Antoni: Let's Do Dinner" by Antoni Porowski
Let’s Do Dinner is an invitation into Antoni’s easy kitchen Learn more
Customers who viewed this item also viewed
Editorial Reviews
From the Back Cover
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, treebased methods, support vector machines, clustering, and more. Color graphics and realworld examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform.
Two of the authors cowrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and nonstatisticians alike who wish to use cuttingedge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.
This text refers to an alternate kindle_edition edition.Review
About the Author
Gareth James is a professor of data sciences and operations at the University of Southern California. He has published an extensive body of methodological work in the domain of statistical learning with particular emphasis on highdimensional and functional data. The conceptual framework for this book grew out of his MBA elective courses in this area.
Daniela Witten is an associate professor of statistics and biostatistics at the University of Washington. Her research focuses largely on statistical machine learning in the highdimensional setting, with an emphasis on unsupervised learning.
Trevor Hastie and Robert Tibshirani are professors of statistics at Stanford University, and are coauthors of the successful textbook Elements of Statistical Learning. Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie codeveloped much of the statistical modeling software and environment in R/SPLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is coauthor of the very successful An Introduction to the Bootstrap.
Review
"An Introduction to Statistical Learning (ISL)" by James, Witten, Hastie and Tibshirani is the "how to'' manual for statistical learning. Inspired by "The Elements of Statistical Learning'' (Hastie, Tibshirani and Friedman), this book provides clear and intuitive guidance on how to implement cutting edge statistical and machine learning methods. ISL makes modern methods accessible to a wide audience without requiring a background in Statistics or Computer Science. The authors give precise, practical explanations of what methods are available, and when to use them, including explicit R code. Anyone who wants to intelligently analyze complex data should own this book." (Larry Wasserman, Professor, Department of Statistics and Machine Learning Department, Carnegie Mellon University)
This text refers to an alternate kindle_edition edition.Product details
 ASIN : B00DM0VX60
 Publisher : Springer; 1st ed. 2013, Corr. 7th printing 2017 edition (June 24, 2013)
 Publication date : June 24, 2013
 Language : English
 File size : 4169 KB
 TexttoSpeech : Enabled
 Enhanced typesetting : Not Enabled
 XRay : Not Enabled
 Word Wise : Not Enabled
 Print length : 440 pages
 Lending : Not Enabled

Best Sellers Rank:
#1,945,485 in Kindle Store (See Top 100 in Kindle Store)
 #449 in Mathematical Physics (Kindle Store)
 #522 in Mathematical & Statistical
 #1,392 in AI & Semantics
 Customer Reviews:
Customer reviews
Top reviews from the United States
There was a problem filtering reviews right now. Please try again later.
Well, I'm lucky (and probably so are you) because in 2013 Stanford Statistics professors James/Witten/Hastie/Tibshirani wrote this simpler 'An Introduction to Statistical Learning' that requires only a Bachelor's degree in Mathematics or Statistics. If you have that math grounding, then this is a wonderful book to start your Statistical Learning. The book offers a clear application of Mathematical Statistics and the programming language R to Statistical Learning. At the end of each chapter, the authors provide 1015 questions to test whether you've digested the material.
Only a few times have I needed to review my Hogg/Craig 'Introduction to Mathematical Statistics'. If you want an excellent book on Mathematical Statistics to prepare you for both 'Introduction to Statistical Learning' and 'The Elements of Statistical Learning', buy the 7th edition of 'Introduction to Mathematical Statistics' by Hogg/McKean/Craig, which is typically used for a yearlong (2 semesters) class for 1st or 2nd year graduate students in Mathematics or Statistics. In fact, you could simply bone up on Hogg/McKean/Craig, skip 'Introduction to Statistical Learning', and go straight to the more challenging 'Elements of Statistical Learning'. I wanted to digest some Statistical Learning asap and probably so will you. Enjoy.
If you are already programming ML a lot and you want to step up your ML math but find ESL too hard because it is not selfcontained and uses too much graduate stats terminology then do not fall for the reviewers that recommend reading ISL (Introduction to Statistical Learning) instead. ISL does not contain explanations missing from ESL. In fact, it does not explain math at all, but instead, it gives a very broad overview of statistical methods that overlap with ML.
Then who is this book for? This book is for someone who juuust started learning ML, like completed the coursera ML course or started using Python scikitlearn.
The book is wellwritten though. It is not selfcontained because it does not explain math but merely gives a minimum intuition behind it.
As one example, I have established as a personal practice that I will never use the subset argument of lm(), even though it is used throughout this entire text. Why is this? I was curious one day, and decided to compare subsetting the data argument, versus putting the indices inside the subset argument.
It turns out that in both cases, I obtained a different result. (See StackOverflow, with q/46939063/ appended to the link.) After asking around on Cross Validated as well (q/309931 appended to the URL of Cross Validated), I concluded that using the subset argument of lm() was bad advice.
Now, in prediction, this issue doesn't occur. But if you're planning on using lm() to interpret parameter estimates, don't follow this textbook's advice.
Top reviews from other countries
Since data science is a fast moving field, there are people who want to jump on the deep learning bandwagon straightaway. This is not the correct way to enter the field. You have to have you statistical bases covered before you touch the more advanced topics. This is especially true for CS students who learn more of discrete math which doesn't lend itself well in the world of AI/ML.
So for those learners I would recommend this book. If you selfassess yourself to be good at Maths and an advanced learner, I would recommend the authors' other book Elements of Statistical Learning.

Statistical Learning:
A set of tools used to analyze data. Includes most general techniques in AI excluding Neural Networks. Kinds of tools covered: Regressions, Logistical Regression, Linear discriminant analysis, Decision Trees, Random Forest, Boosting, Cross Validation, SVM, PCA, Kmeans clustering.

Standouts (Strong topics):
1) Great coverage in Linear Regression. Absolutely brilliant. For the first time in my life (I've been in data science for ten odd years) I learnt about tstatistic and fstatistic in the way that it should be taught.
2) Good mathematical coverage of cross validation
3) Good coverage of Logistic Regression, PCA, Random Forest and trees, Clustering.
Bonus: Great coverage of relationship between SVM and logistical regression  history of hype behind kernel methods in SVM

Not so good parts:
1) I mentioned in my headline that i have a love hate relationship with this book. The reason for the lower rating is that there were many parts where i looking for external references. This book leaves you in the wilderness of mathematics many times of stating a conclusion without a proof. This to me is the same mistake made by several Indian books, and unlike the authors' other book ESL.
My advise to the authors is cover a topic fully or not at all. To not assume no knowledge of mathematics by the reader, especially given 
2) The book is mathematically hard in parts. They don't treat the reader with baby gloves. Several times the summations used take some disambiguation to understand. This is in my opinion good. Just that there are other parts of the book where they do not assume the same level of expertise from the reader and will just state a complex formula without derivation or justification. The consistency is not there.
3) It felt like different chapters in the book were written by different people and that's why there is a difference in the level of mathematics used and tone of teaching used. I will advise authors for another edition where the additions/editing are done by one author throughout and there are tougher parts put in the appendix.

Best Parts:
The copy I got from Springer was simply a delight to read. It was made of silky paper and page turning was so easy. It will be one of the books in my collection.
Authors:
These authors are very famous. They are pioneers in the field of statistical learning. The word was coined by them, to include all methods of learning from data excluding neural networks (which came from the AI world).
MOOC:
The Mooc is available for free from Stanford Lagunita. Do check it out if you are buying the book. I easily recommend the book over the video lectures. The reason is that the book is the best "Introductory statistics for ML" but there are several better MOOCs than the Lagunita one for ML.

Application:
I would rate it 5/5 for applicative learning as they run a parallel stream through the book teach you R as well. For those of you who don't know it was lingua franca for Data Scientists before the TensorFlow age. Though it has marginally decreased in popularity since then, it is still the best nonproduction data science language available.
Note: Due to several R paradigms (libraries) having changed since the book, I would not recommend it to learn R. It's something that can give you a taste of R that you have to learn full fledged elsewhere. I recommend MOOC : The Analytics Edge for this.

Overall:
The book is great for the right audience. Decide whether
1) You are medium to advanced in the field. Then buy ESL (Elements of statistical learning) over ISLR
2) You are from different field and are not thrown off by mathematical notations
3) You are disappointed with regular statistics books as required for Data Science.
4) You want to go "the right way" to learning AI and ML, and don't want to jump to the advanced topics straightaway without understanding the basics.
This is THE book for an undergraduate first or second year book, for a first course in AI or ML. But you have to be ready to work through another book after this. The foundations you learn in this book will hold you steady as you trudge into the world of data science.

Free availability of book:
The authors have officially made the book available for free as a pdf from the book website. I have personally found it extremely hard to read books on a laptop because our computers are filled with all kinds of distractions. Further the book printing quality was extremely good.
But if you cannot afford (college student etc), then no doubt read the pdf.

Note: Advanced learners can straightaway go for the book by the same authors, ESL (Elements of Statistical Learning).
Note 2: I didnt have the opportunity to work through the exercises, but I have to note that the exercises are extensive. Making it again suitable for college learners